Maintenance window scheduled to begin at February 14th 2200 est. until 0400 est. February 15th

(e.g. yourname@email.com)

Forgot Password?

    Defense Visual Information Distribution Service Logo

    Apollo display and keyboard unit (DSKY) used on F-8 DFBW

    Apollo display and keyboard unit (DSKY) used on F-8 DFBW

    WASHINGTON, DC, UNITED STATES

    09.23.2009

    Courtesy Photo

    NASA

    The display and keyboard (DSKY) unit used on the F-8 Digital Fly-By-Wire (DFBW) aircraft during Phase I of the fly-by-wire program. Warning lights are in the upper left section, displays in the upper right, and the keyboard is in the lower section. The Apollo flight-control system used in Phase I of the DFBW program had been used previously on the Lunar Module and was incredibly reliable. The DSKY was one element of the system. Also part of the fly-by-wire control system was the inertial platform. Both the computer and the inertial platform required a cooling system that used liquid nitrogen to keep the system within temperature limits. Should the primary flight control system fail, a backup system using three analog computers would automatically take over. The F-8 DFBW had no manual backup. The F-8 Digital Fly-By-Wire (DFBW) flight research project validated the principal concepts of all-electric flight control systems now used on nearly all modern high-performance aircraft and on military and civilian transports. The first flight of the 13-year project was on May 25, 1972, with research pilot Gary E. Krier at the controls of a modified F-8C Crusader that served as the testbed for the fly-by-wire technologies. The project was a joint effort between the NASA Flight Research Center, Edwards, California, (now the Dryden Flight Research Center) and Langley Research Center. It included a total of 211 flights. The last flight was December 16, 1985, with Dryden research pilot Ed Schneider at the controls. The F-8 DFBW system was the forerunner of current fly-by-wire systems used in the space shuttles and on today's military and civil aircraft to make them safer, more maneuverable, and more efficient. Electronic fly-by-wire systems replaced older hydraulic control systems, freeing designers to design aircraft with reduced in-flight stability. Fly-by-wire systems are safer because of their redundancies. They are more maneuverable because computers can command more frequent adjustments than a human pilot can. For airliners, computerized control ensures a smoother ride than a human pilot alone can provide. Digital-fly-by-wire is more efficient because it is lighter and takes up less space than the hydraulic systems it replaced. This either reduces the fuel required to fly or increases the number of passengers or pounds of cargo the aircraft can carry. Digital fly-by-wire is currently used in a variety of aircraft ranging from F/A-18 fighters to the Boeing 777. The DFBW research program is considered one of the most significant and most successful NASA aeronautical programs since the inception of the agency. F-8 aircraft were built originally for the U.S. Navy by LTV Aerospace of Dallas, Texas. The aircraft had a wingspan of 35 feet, 2 inches; was 54 feet, 6 inches long; and was powered by a Pratt & Whitney J57 turbojet engine.

    NASA Identifier: NIX-EC96-43408-1

    LEAVE A COMMENT

    IMAGE INFO

    Date Taken: 09.23.2009
    Date Posted: 10.10.2012 10:47
    Photo ID: 683588
    Resolution: 1536x1321
    Size: 303.18 KB
    Location: WASHINGTON, DC, US

    Web Views: 88
    Downloads: 4

    PUBLIC DOMAIN