

New/Advanced NL Materials, Payloads, and Payload Delivery Systems

Non-Lethal Weapons Research and Technology Development
Industry Day

22 June 2012

David Law
Technology Division Chief
http://jnlwp.defense.gov

Approved for public release; distribution is unlimited.

Background

- The JNLWD is interested in investigating new non-lethal payloads and delivery systems that can improve the operational performance of non-lethal weapons as compared to existing technology.
- There exists a number of effective non-lethal stimuli but not always effective ways to deliver them on target at operationally relevant ranges.
- Some general desired improvements:
 - Improved accuracy
 - Reduced risk of significant injury
 - Reduced logistical burden (batteries, pneumatics, size, weight, etc.)
 - Reduced cost per engagement

Technical Objectives

- Identify and characterize new materials and non-lethal payloads that could extend the performance envelope of existing non-lethal weapon systems or provide novel nonlethal effects
- Develop and demonstrate generic non-lethal payload delivery platforms that address:
 - Standoff range (min and max)
 - Coverage
 - Accuracy
 - RSI
 - Reversibility
 - Scalability
 - Logistical burden
 - Probability of effect
 - Operator safety

Relevant Work

- Advanced Non-Lethal Projectile
 - NSWC-Dahlgren
 - Focus: Develop and characterize a new 12-gauge non-lethal blunt impact projectile utilizing Zorbium® visco-elastic foam.
- Carbon Nanotubes Acoustic Driver
 - Penn State University; University of Texas at Dallas
 - Focus: Develop and demonstrate a smaller, lighter, and lower cost high-power Carbon Nanotube (CNT) acoustic driver that offers numerous advantages over conventional coil drivers
- Non-Incendiary Flash Bang
 - Performers: Various
 - Focus: Developing and demonstrating a non-sparking flash bang grenade for use in combustible environments

General types of tasks required for research and development:

- Feasibility studies
- Prototype development, testing, and demonstration
- Materials research and development
- Modeling and simulation
- Systems engineering and technology integration

Capabilities

General capabilities and expertise that may be required:

- General engineers and physical scientists with expertise in ballistics, mechanics, thermodynamics, hydrodynamics, aerodynamics, materials, chemistry, and systems engineering
- Facilities and equipment to build and test prototype systems
- Computational scientists and engineers to build computer based models and run simulations

Questions?

Please submit questions by 29 June 2012:

wesley.burgei@usmc.mil

and

alicia.owsiak@usmc.mil