Maintenance window scheduled to begin at February 14th 2200 est. until 0400 est. February 15th

(e.g. yourname@email.com)

Forgot Password?

    Defense Visual Information Distribution Service Logo

    Detailed View of Arctic Sea Ice: Image of the Day [Image 1 of 2]

    Detailed View of Arctic Sea Ice: Image of the Day

    WASHINGTON, DC, UNITED STATES

    07.08.2011

    Courtesy Photo

    NASA

    For many years, scientists have expected that climate change will be more rapid and dramatic at the poles than at lower latitudes, an expectation that has been demonstrated both with climate models and recent observations of snow and ice, surface temperatures, vegetation, and permafrost. The major reason for this of climate change is because snow and ice aren't just the result of a cold climate, they also help create it. The path by which snow and ice influence the climate is obvious in this detailed, photo-like image of Arctic sea ice, captured on June 16, 2001, by NASA's Landsat-7 satellite. Sea ice is spread across the nearly black backdrop of the Arctic Ocean in a broken mosaic. Large blocks of ice swirl against finely crushed ice that looks almost like foam. The dark ocean surfaces absorb incoming sunlight, while sea ice reflects it. A cooling climate increases snow and ice, which increases solar reflection, leading to more cooling. Warming climates cause snow and ice to melt, which increases solar absorption, leading to more warming. Steady declines in Arctic sea ice over previous decades -- and especially rapid declines since around 2000 -- caused Seiji Kato, an atmospheric scientist affiliated with NASA's Langley Research Center through Hampton University, to wonder whether the recent losses were already dramatic enough to have changed the percent of incoming sunlight the Earth reflects back to space. This planetary ''vital sign'' is known as Earth's To answer the question, Kato and several teammates compared a suite of NASA and NOAA (National Oceanic and Atmospheric Administration) satellite observations of reflected sunlight, clouds, and sea ice and snow cover at polar latitudes from 2000-2004. What they found was a bit of a surprise: while snow and ice in the Arctic declined, the albedo didn't change. To read more about the team's investigation, read the Earth Observatory feature story earthobservatory.nasa.gov/Study/ArcticReflector/ Arctic Reflection: Clouds Replace Snow and Ice as Solar Reflector.

    NASA Identifier: ge_07370

    LEAVE A COMMENT

    IMAGE INFO

    Date Taken: 07.08.2011
    Date Posted: 10.19.2012 15:59
    Photo ID: 752837
    Resolution: 3258x3258
    Size: 6.55 MB
    Location: WASHINGTON, DC, US

    Web Views: 118
    Downloads: 15

    PUBLIC DOMAIN