News Icon

News: Networked vehicle production in full swing at U.S. Army Detroit Arsenal

Story by Katie CainSmall RSS IconSubscriptions Icon

Networked vehicle production in full swing at U.S. Army Detroit Arsenal Katie Cain

Support personnel at the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), in Warren, Mich., review vehicle blueprints for the first five "super configuration" Mine Resistant Ambush Protected (MRAP) prototype vehicles equipped with Capability Set 13 (CS 13) assets. CS 13 is the first integrated group of networked technologies - radios, sensors and associated equipment and software - that will deliver an integrated voice and data capability throughout the entire Brigade Combat Team (BCT) formation, from the brigade commander to the dismounted soldier.

WARREN, Mich. — Beginning this October, the Army will field the first integrated group of networked technologies - radios, sensors and associated equipment and software - that will for the first time deliver an integrated voice and data capability throughout the entire Brigade Combat Team (BCT) formation, from the brigade commander to the dismounted soldier.

This networked package, known as Capability Set 13 (CS 13), is the Army's tactical network baseline designed to extend the network down to the individual soldier and significantly enhance Mission Command on the Move and soldier connectivity.

The connectivity, architecture and components of CS 13 were validated at the service's most recent Network Integration Evaluation, NIE 12.2, conducted May-June at White Sands Missile Range, N.M., but the ongoing integration and planning work began months before.

A large part of the planning involves bringing together the Army's Program Executive Offices (PEOs) and Program Managers (PMs) during the NIE/Agile Process using the Capability Set Integrated Master Schedule, or IMS, for integration, production and deployment. The IMS is the backbone of CS 13 as it serves to synchronize the network and vehicle PMs' master schedules as they relate to integrating and fielding capability sets.

The Army's Capability Set fielding plan supports a synchronized vehicle and network fielding strategy, prioritizes capabilities for our deployed forces and improves alignment of limited resources.

In May, the Army completed the Mine Resistant Ambush Protected (MRAP) final design review, which solidified how CS 13 assets will be integrated into that vehicle platform. MRAPs will be utilized in the first Infantry Brigade Combat Team formations that will be equipped with CS 13. The NIE has been vital to validating MRAP network design and architecture.

Currently, the first five "super configuration" MRAP prototype vehicles are being built at the U.S. Army Tank Automotive Research, Development and Engineering Center (TARDEC), located in Warren, Mich. The five MRAP super configurations include soldier Network Extension (SNE), Point of Presence (PoP), Vehicular Wireless Package (VWP), MaxxPro and MRAP-Lites.

"This project is considered a level one because it's so large," said Dave Mroczka, project engineer for the Center for Ground Vehicle Development and Integration at TARDEC. "There are five trucks, a lot of electronics equipment, a lot of design and a lot of integration."

Mroczka leads the CS 13 performance efforts, which include running technical meetings, following the integration activities that take place on a day-to-day basis, and bringing together the different facets within engineering groups at TARDEC, as well as the overall design.

Each BCT has 373 vehicles, and under the current construct, there are 42 combinations under the five super configurations, which allows the Army to build any combination within each configuration without altering the vehicle.

"This allows you to change what you put in a vehicle while protecting the vehicle space," said Mroczka. "For example, if you needed to swap out a radio for a different one, it can easily be done."

This was one of the things we learned during NIE, Mroczka explained. There is some overlap in the individual systems but it wasn't necessary to put every CS 13 systems on every vehicle in the NIE. The main thing we had to do was figure out how to pull all those systems together afterwards. That's how we designed the super configurations, he said.

Soldier feedback out of the NIE process has been invaluable as it has led to many significant design and user interface improvements that are currently being incorporated into the final MRAP configurations.

"One of the things we learned during the IOT&E was that both the commander and the driver needed to be able to see the display screen in an MRAP," said Jerry Tyree, System of Systems Integration (SoSI) lead engineer. Based on soldier feedback, we were able to move a screen to the back of the seat so the commander and the driver could see what was going on, he explained.

These screens, known as Multi-Domain Atlas', were not part of NIE 12.2, but they will be installed on the CS 13-equipped vehicles.

In addition to changes spawning from the NIE and the ongoing MRAP integration, TARDEC is also working the design for networked High-Mobility Multi-Purpose Wheeled Vehicles (HMMWV) platforms that will be used as training sets by CONUS units as they prepare to deploy. Roughly 30-35 TARDEC employees, plus personnel from SoSI and PM MRAP are involved with the MRAP and HMMWV design/production.

"One of the most challenging aspects of this project is the rigid schedule," said Mroczka. "We've never had these types of requirements and design builds due in such a short timeframe and everything we do affects the other organizations involved in CS 13 vehicle production."

The remaining prototype vehicles to be equipped with CS 13 will be built at the Navy's Space and Naval Warfare Systems Command (SPAWAR) in Charleston, S.C., and the Red River Army Depot in Texarkana, Texas. SPAWAR will build the MRAP production assets to support the October fielding of CS 13, while HMMWV training set production will be done at Red River.

Once the prototype vehicles are fully built, they'll be shipped to Aberdeen Proving Ground (APG), Md. where they will undergo initial safety release and network verification testing. This will begin mid-August, and the last set of vehicles will be shipped mid-September.

Following this, the vehicles will be turned over to the 3rd and 4th Brigades from the 10th Mountain Division, the first two BCTs to receive CS 13, to begin New Equipment Training (NET) on October 1. The units will train on the equipment until they deploy with CS 13 assets in 2013.

The Army will field CS 13 to eight BCTs, with priority going to deployed forces (three BCTs), units scheduled to deploy next (three BCT training sets), a forward-stationed brigade in Korea, and the 2nd Heavy BCT, 1st Armored Division (2/1 AD), which was the first unit to receive CS 13 equipment during NIE 12.2.

After fielding CS 13, the Army will program to field up to six BCT sets of network equipment per year for the FY14-18 Program Objective Memorandum (POM), to better synchronize its platform and network modernization efforts.


Connected Media
ImagesNetworked vehicle...
The Prototype Integration Facility (PIF) at the U.S....
ImagesNetworked vehicle...
Support personnel at the U.S. Army Tank Automotive...


Web Views
448
Downloads
0

Podcast Hits
0



Public Domain Mark
This work, Networked vehicle production in full swing at U.S. Army Detroit Arsenal, by Katie Cain, identified by DVIDS, is free of known copyright restrictions under U.S. copyright law.

Date Taken:08.01.2012

Date Posted:08.01.2012 12:21

Location:WARREN, MI, USGlobe

Options

  • Army
  • Marines
  • Navy
  • Air Force
  • Coast Guard
  • National Guard

HOLIDAY GREETINGS

SELECT A HOLIDAY:

VIDEO ON DEMAND

  • Facebook
  • Twitter
  • Youtube
  • Flickr